Understanding Babesia
Stealth Characteristics of Babesia
- Initial infection is mild or does not cause symptoms in most people
- A carrier state is common
- Chronic infection is associated with Chronic Immune Dysfunction
- Low grade chronic illness is associated with vague and nonspecific symptoms
- The microbe is typically present in low concentrations in the body
- It has a slow growth rate
- It lives (and reproduces) inside red blood cells (intracellular)
- It is extremely difficult to diagnose
- It responds poorly to antibiotics and vaccines
- It can alter its genotype at will for any change in its environment
Typical Babesia Symptoms
People bitten by a tick carrying babesia may hardly get sick at all, or may get very sick very suddenly. For individuals with a healthy immune system, babeisa infections are typcially associated with few symptoms; a mild bout of “flu” lasting 1-2 weeks. After a mild initial infection, the person can become an asymptomatic carrier. Asymptomatic carriers can become severely ill if immune status falters at a later time (such as another tick bite carrying borrelia or other stealth microbes). In certain situations, however, babesia can cause very severe illness very acutely.Risk factors for severe disease include:
- Do not have a spleen (up to 20% mortality)
- Weak immune system (AIDS, corticosteroid therapy, malignancy with therapy, multiple stealth microbe infections at one time)
- Elderly (>50 years old, especially with health problems)
The spleen is an essential organ for overcoming babesia. It acts like a sieve to clear organisms from the blood. The spleen is also the source of chemical messengers that ultimately allow the body to eradicate babesia.
Common symptoms associated with severe babesia infection
- High fever (105 F)
- Severe fatigue and malaise
- Shaking chills and sweats
- Severe headache
- Muscle aches (myalgia)
- Joint pain (arthralgia)
- GI: nausea, abdominal pain, diarrhea
- Decreased blood pressure
- Jaundice (yellow skin and eyes)
- bruising
- Petechiae (small red spots in the skin)
- Decreased cognition (from intravascular coagulation)
- Dark urine
- Pulmonary edema (lungs fill with water)
Severe infection can last weeks to months. A relapsing form of the illness with a recurring cycle happening every several months is common.
HALLMARK SIGN OF BABESIA: recurrent severe drenching sweatsSigns and abnormal labs
- enlarged spleen and liver
- anemia (low hemoglobin)
- decreased platelets
- evidence of hemolysis (destruction of red blood cells)
- elevated liver function
- mild neutropenia / leukopenia (decreased white blood cells)
- low or unstable blood pressure
- organ malfunction (heart attack, stroke, respiratory distress, kidney failure)
Diagnosing Babesia
Like many stealth microbes, babesia is notoriously difficult to diagnose. Because concentrations of the organism in the body are so low, it is often hard to find. Direct visualization. Red blood cells stained with a special stain called Giemsa are viewed under a microscope. Babesia organisms have the appearance of a Maltese cross or “double pear sign” inside affected red blood cells. Like other stealth microbes, however, babesia often remains elusive. Because concentrations of the organism are low in the body (only 1% of rbc are typically affected) and hard to see inside stained cells, even the best lab technicians have a hard time picking them up. About the only time direct visualization is valuable is during acute infection with high fever. In a recent article in the Townsend Letter, James Schaller MD, MAR (specialist in treatment of Lyme disease and babesia) stated that all direct testing for babesia is 95% inaccurate. Polymerase Chain Reaction (PCR). PCR detects microbial DNA in a blood sample. It is sensitive enough to pick up only a few copies and babesia DNA in a blood sample and is species specific. It has a better pickup rate than direct visualization, but reviews are mixed on the actual accuracy of the test. Fluorescent In Situ Hybridization (FISH). FISH tests for rRNA of a specific babesia species in blood. It also is designed to be more sensitive and specific than other forms of testing. Indirect Fluorescence Assay (IFA). IFA tests for IgG and IgM antibodies produced by the body against babesia. It does not pick up early infection and is dependent on antibody production by the body. This test is not as valuable as PCR or FISH for diagnosing the presence of babeisa. Other lab tests that can be valuable for diagnosing babesia include complete blood count (CBC) showing decreased hemoglobin and low platelets, elevated reticulocyte count, and possibly decreased CD 57 and CD 8 white blood cells, but this only occurs in very ill individuals. (To an oncologist this laboratory picture would suggest cancer, and cancer must be completely ruled out if these findings are present.) IGeneX uses an amplified version of PCR and FISH together for improved accuracy of testing for B. microti and B. ducani. (According to Dr. Schaller, however, in his practice the pick up rate is only about 25%.) The primary drawback to testing with IGeneX is high expense and lack of coverage by insurance. The best approach is generally a high index of suspicion. When relapsing high fever occur with a anemia, jaundice, and history of tick bite, babesia should be considered.Babesia Lifecycle
Babesia organisms are transmitted mostly by hard ticks. After entering the bloodstream from a tick bite, babesia immediately invades red blood cells. Inside red blood cells, the organisms rapidly divid (asexual reproduction) and fill the cell with organisms. Babesia organisms stick large numbers of red blood cells together (clustering of rbc) as a food source and also to gain protection from immune system. This can result in spontaneous rupture of small blood vessels, causing bruising and formation of petechiae (small red spots on the skin). Because red blood cells are destroyed, severe babesia infection can mimic cancer. Enlarged red blood cells, swollen with organisms, can impede passage through capillaries. Babesia also increases clotting (people infected with babesia clot very fast). In worse case scenario, this can cause mini-strokes. Blockage of small blood vessels from swollen blood vessels and increased clotting are one of the main ways babesia causes harm. Via red blood cells, babesia organisms are circulated throughout the body. Babesia organisms then invade cells lining the liver and spleen (endothelial cells). Vacuoles (small cysts) are formed to gain protection from the immune system and antibiotics. Inside the liver and spleen, babesia organisms reproduce sexually. Sexual reproduction allows maximal genetic diversity. During a complete lifecycle, babesia goes through four separate stages (sporocytes, gametocytes, ookinetes, merozoites). All four stages can be present in the body at one time. This guarantees maximal survivability. The cycle repeats every several months with release of a flood of microbes into the circulation and relapse of symptoms. Babesia can be present without causing symptoms for a long time and then a trigger (infection with borrelia, travel stress, trauma, surgery, etc.) precipitates an acute attack.Immune Reaction to Babesia
Like other stealth microbes, babesia very specifically affects chemical messengers of the immune system to allow itself to flourish. These chemical messengers, called cytokines, orchestrate the entire immune response. Disabling or interfering with the cytokine system is a key strategy of microbes during infection. The immune system uses specific pathways for dealing with different types of microbes. Different pathways use different cytokines. The Th1 pathway is specific for microbes that thrive inside cells (intracellular). This is the pathway the immune system uses to deal with stealth microbes. The Th2 pathway is designed to deal with intestinal parasites such as nematodes. Babesia (and other stealth microbes) try to shift the immune response away from Th1 toward Th2. Cytokine pathways- Th1 - intracellular microbes (cytokines: IFN-gamma, IL-12, TNF-alpha)
- Th2 - intestinal parasites (IL-4, IL-5, IL-10, IL-13)
Conventional Medical Solutions
The conventional medical solution is focused exclusively on killing microbes. While this can be effective in some cases, it does not support restoration of normal immune function or the healing systems of the body. This, along with the fact that antimicrobial resistance by babesia is becoming commonplace, dramatically limits the value of conventional medical therapy alone. It should be noted that doxycycline, commonly used for tick-borne infections, is not effective against babesia. Most physicians follow standards recommended by the Centers for Disease Control and Prevention (CDC).CDC Guidelines for Babesia Standard treatment of 7-10 days Atovaquone 750 mg twice daily and Azithromycin 500-1000 mg initially followed by 250-1000 mg daily OR Clindamycin 600 mg 3 times daily or 600 mg IV 4 times daily and Quinine 650 mg 3 times daily
There are other medications that may be useful for babesia
Nitazoxanide. This is a new anti-parasite drug designed for giardia. It is a broad spectrum antiparasitic agent that may have activity against babesia. It is generally well tolerated. Artemether / lumefantrine. This is a semisynthetic derivative of the herb artemesia. It can be effective against babesia and has less side effects than Atovaquone. Atovaquone / Proguanil (Malarone). Kills babesia, but the combination medication is associated with nausea and other severe side effects Mefloquine (Lariam). Kills babesia, but this drug is associated with terrible side effects including insomnia, mood changes, irritability, restlessness, poor concentration. Heparin. Heparin is a commonly used anticoagulant administered by subcutaneous or IV injection. According to Stephen Buhner, it has value for severe babesia.- inhibits blood coagulation
- reduces cerebral impacts
- suppresses replication of organisms
Other “heroic-type” therapies are sometimes used for babesia
- Hyperbaric oxygen. Expensive and does not kill babesia or any other Lyme pathogen.
- Ozone therapy. Ozone administered IV is unsafe. No studies have adequately defined efficacy. The value of rectally administered ozone has not been defined and significant safety issues are present.
Natural Solutions
Individuals with healthy immune function generally do not have difficulty clearing babesia. Any natural approach to overcoming babesia should be focused on supporting restoration of normal immune function and enhancing the healing systems of the body, as well as killing or suppressing microbes. The list of herbal and natural therapies with value in babesia infection is extensive. For a comprehensive list, see the Suffered Long Enough book >>Best Options for Babesia Infection
Babesia infection with mild symptoms or hidden babesia infection with no symptoms will generally respond to natural protocols focused on immune enhancement and general suppression of microbes. Immune enhancement is the key. If symptoms of severe babesia infection are involved (high fever, drenching sweats, bruising, jaundice, etc,) it is very important to have a knowledgeable healthcare provider involved in defining therapy. Options for therapy include a combination of conventional drug therapy (for at least 6 weeks) and natural immune enhancement (herbal therapy) OR a meticulously comprehensive natural babesia protocol such as that defined by Stephen Buhner (must be followed to the letter for success).SHARE THIS PAGE: